
dcml.org

Gaining control of complexity
The standard for the data center

This document describes the data center markup language (DCML), a structured XML-

based format for describing the contents of data centers and the policies governing

the management of those contents. DCML describes blueprints for constructing man-

aged environments, the knowledge necessary to turn those blueprints into an environ-

ment instance and the resulting environment.

technical white paper

Authors:

Tim Howes

Chief Technology Officer

Opsware Inc.

Darrel Thomas

Chief Technologist

EDS Hosting Services

Table of Contents

Introduction 1

New methods and approaches 1

Introduction to DCML 1

Why a standard? 2

Comparison to traditional
approaches 2

Related standards 3

DCML concepts 3

Security 4

Overview of the DCML
specifications 4

XML representation of DCML 4

Future DCML work 4

2

< 1 >

technical white paper

These new approaches brought with them

new requirements, on behalf of customers,

for vendor independence and interoperability.

Just as traditional management approaches

led to the development of standards such

as Simple Network Management Protocol

(SNMP) and Common Information Model

(CIM) for interoperable network monitoring

and management applications, today’s new

automated management approaches require

standards that support interoperability

among solutions. The data center markup

language (DCML) is a proposal for one

such standard.

Introduction to DCML
In the automated data center, there is a

need for a standard format to describe the

contents of the data center and the policies

governing the construction and management

of that content. This need is evident in a

number of scenarios:

• Construction and change – Customers
often need to build or rebuild the full or
partial contents of data centers. The
build case occurs when new applications
or infrastructure are deployed, during
technology refresh cycles and when
increasing the capacity of existing
applications. The rebuild case occurs
during disaster recovery, data center
consolidation and migration, and during
simple system recovery.

• Automated implementation of these
scenarios requires two things. First is a
comprehensive blueprint of the environ-
ment to be built. Hardware requirements,
software components and configurations,
networking and storage – all must be spec-
ified to facilitate automation. Furthermore,

New methods and approaches
The information technology (IT) approach

to managing the data center has not kept

pace with these changes. IT departments are

still using methods developed when data

centers were significantly less complex.

These methods rely on armies of experts to

make manual changes to the environment

and react to problems after they occur. The

result for IT has been a staggering increase

in cost and decrease in quality. Traditional

data center management tools such as

monitoring have not kept pace with these

changes either, employing the same pas-

sive, manual frameworks implemented a

decade ago. Advances among these tools

have resulted in solutions that amplify the

bad results of the manual approach.

This situation led to new approaches to data

center management. Although these new

approaches go by different names and are

designed to solve different parts of the

problem, they all share common character-

istics and goals. Data center automation,

utility computing, adaptive enterprise

computing, on-demand computing and other

efforts focus on replacing the traditional

manual, passive approach to data center

management with an automated, active

approach. The active approach is designed

to reduce costs through increased labor and

equipment utilization, and to increase quality

by eliminating human error and enforcing

best practices. These new approaches do not

replace the traditional monitoring, ticketing

and other operational systems. Rather,

they typically integrate with and build on

those systems, making them more effective

in the new data center environment.

this description must be in a form
adaptable to a variety of environmental
situations. Second is the set of policies
governing the building of the environment.
Approved and banned versions and com-
binations of various technologies, the order
in which software is installed and started,
the blessed configurations to be used,
the required support from underlying
hardware – all must be specified to ensure
the resulting environment conforms to
standard best practices. Third is a descrip-
tion of the individual components that
make up the environment itself. A DCML
description is composed of these three
components, as depicted in Figure 1.

• After it is constructed, the data center
environment endures constant change.
Patches are applied and removed, new
versions of applications are rolled out and
rolled back, configurations are tweaked,
capacity is added and removed, and a
host of other changes happen on a daily
basis to support changing requirements.

• In an automated data center, these changes
must be described in detail so they can
be applied without human intervention.
Changes are governed by strict policies
aimed at minimizing downtime caused by
disruptive changes and maximizing the
agility with which good changes can be
made. Furthermore, the result of these
changes must be documented and com-
municated to monitoring and other systems.

• Visibility – Many useful and illuminating
conclusions can be drawn from an accu-
rate and up-to-date representation of a
data center environment. Reporting on
hardware and software usage in the
data center is an obvious example. But
such information can also inform data
center planning decisions, procurement
decisions and other business processes.

Over the past five to 10 years, dramatic changes have occurred in the data center landscape. The proliferation of the Internet

and the World Wide Web made it dramatically easier to develop and deploy applications. The introduction of multitiered Web-

based application architectures caused a substantial shift of computing power from client back to server. The continuing trend

toward smaller, cheaper servers resulted in a dramatic increase in the number of servers. The result of these trends has been

an explosion of complexity and scale in the data center. Today’s data centers often contain thousands or tens of thousands of

servers, networking devices, storage devices and other special-purpose equipment, running an even greater array of operating

systems, software, configurations and data.

How well are we handling data center complexity?

Introduction

< 2 >

technical white paper

In other scenarios, the knowledge is specific,

used to keep other systems in sync with the

current state of the environment as changes

are made – for example, incremental changes

to the list of servers that should be monitored.

This use may imply a more incremental

description exchanged with systems in a

real-time environment. DCML supports

both types of uses.

A DCML description provides the blueprint

that enables an appropriate data center

automation tool (or set of tools) to reproduce

the infrastructure described or extract useful

information from the description. Like an

architectural blueprint, a DCML blueprint

can be easily adapted to slightly different

environments, such as hardware, networking

and data center variations. DCML can also

describe the key building blocks (software

packages, configurations, etc.) and policies

necessary to construct an actual environ-

ment based on the blueprint. Finally, DCML

can describe the resulting environment

itself. All of these descriptions can be used

to extract information useful to traditional

management systems, and to drive pro-

curement and other planning processes.

Why a standard?
A standards-based approach to these

problems provides a number of benefits.

For the types of applications described

above, multiple components from different

vendors are almost always involved and

must be described. A standard format

enables all components to be described

using a single format. Similarly, multiple

automation tools may be required to

reproduce the components being described

(for example, an OS-provisioning tool, an

application-provisioning tool and a network-

provisioning tool). A standard format enables

these tools to interoperate more easily.

Furthermore, some scenarios – such as a

move between hosting providers – imply

transfer of control between autonomous

organizational entities, a situation for

which standards are tailor-made.

Comparison to traditional
approaches
Traditionally, tasks such as those described

above were accomplished by a variety

of means:

• Manually – System administrators, data-
base administrators, application experts
and others use their memory, expertise
and knowledge of the existing systems to
reproduce them and communicate the
resulting changes to other systems. There
are numerous problems with this approach,
including slow execution time, inconsis-
tency and poor quality resulting from
human error, out-of-date documentation
and faulty memories of people.

• Ad hoc and platform-specific standards –
Some platforms define de facto standards
for representing certain types of infor-
mation. For example, on Red Hat Linux,
the RedHat Package Manager (RPM)
package format is a de facto standard
for representing software packages.
Similar de facto standards exist on other
platforms. Problems with this approach
include a lack of cross-platform support
and inability to represent the compre-
hensive set of information required across
components. Even within platforms,
often there is no standardization.

• Imaging – Disk images of the machines
and their contents are created and used
to reproduce the configuration when
needed. Problems with this approach
include the fact that images are tied
closely to specific hardware, network
and data center configurations. This
makes it difficult to change any of those
environmental variables when rebuilding.
The storage management problem of
organizing and retaining significant
numbers of large, unwieldy images is
daunting. In addition, imaging generally
only applies to server elements, leaving
networking and other critical infrastruc-
ture components unable to participate.

• For example, having a description of the
requirements of applications slated to
inhabit a given data center, one can
infer the rack space, power and cooling
requirements necessary to house the
applications. Knowing the technology
requirements represented in several
data centers to be consolidated or
migrated, one can infer the hardware
and software that must be procured
to facilitate the transition.

• Management – As with traditional data
centers, the automated data center must
be monitored to detect faults and track
performance, track down and fix problems,
and perform day-to-day management.
Although the needs are similar to those of
the traditional data center, the opportunity
for improvement is huge. Traditional
management systems suffer from not
having an accurate and up-to-date view of
the environment – something automated
systems provide.

In all of these scenarios, the common thread

is the need for knowledge of the configura-

tion of a data center, application, network

component, storage component or server.

In some scenarios, the knowledge is generic,

used to reproduce instances of an object.

The first step in being able to reproduce

something is to describe it. DCML provides a

language for describing these data center

elements, including applications, servers,

software components, configurations, network

and storage infrastructure, and hardware

and data center requirements. Often, such

descriptions may be exchanged offline in their

entirety between data center automation

tools or with traditional management systems.

Figure 1: DCML scope includes environment components, data center blueprints, and

best practice policies

< 3 >

technical white paper

• Backups – The contents of disks are
backed up to tape and often stored offsite
for disaster-recovery purposes. If a disaster
occurs, the tapes are retrieved and
restored. Problems with this approach
include the time required for backup and
restore, and the difficulty getting a consis-
tent, usable backup image that will restore
to a useful state. Backup systems are
generally better at selective file retrieval
than wholesale system restoration.

These solutions also share the problem of not

having a standard for representing the infor-

mation they need to succeed. In the case of

imaging, there is no standard image format

across platforms, and sometimes no standard

format even on a single platform. In the case

of manual recreation, there is no standard

for representing the information needed –

only the knowledge contained in the heads of

people and whatever they may or may not

have captured on paper, in files, and other

places. These problems make it impossible to

reliably extract information needed for data

center planning, inventory management and

other functions among the key needs iden-

tified above. Clearly, given the diverse of

software, hardware, vendors and applications

involved, a standard format is needed.

Related standards
There are several standards either defined

or in process to address related problems,

but none of them can be used in place of

DCML. These related standards are described

briefly below.

• CIM – The Common Information Model is
a Distributed Management Task Force
(DMTF) standard for describing overall
management information in a network/
enterprise environment. CIM defines an
abstract data model, method for instan-
tiation in XML, and mappings to other
management and information standards
such as SNMP and Lightweight Directory
Access Protocol (LDAP). CIM’s focus
is on providing end-to-end consistent
management abstractions to be used
by monitoring and other traditional
management systems. Although CIM is
quite comprehensive in this area and
overlaps somewhat with DCML, CIM is
not well suited to the data center
automation problem, which is DCML’s
much narrower focus. Many of CIM’s
concepts and data elements can be
mapped onto DCML for use with data

center automation tools. Where DCML
overlaps with definitions found in
CIM, DCML references CIM to avoid
duplicating work.

• SDM – Microsoft’s Systems Definition
Model (SDM) is a recently announced
initiative complementary to DCML.
SDM establishes a technical contract
between development and operations.
By providing a standard format for
encoding Windows application compo-
nent requirements, SDM can help
automate the creation of a production
server for Windows-based applications.
However, while SDM provides opera-
tional requirements for an application
component, DCML provides the blueprint
for constructing and managing the entire
environment in which that application
is running. Ultimately, SDM component
requirements will feed directly into the
DCML-defined constraints for Windows
applications.

• ITIL – The IT Infrastructure Library is a
collection of standards defining best-
practice IT processes. ITIL standardizes
processes such as service desk, change
management, service level management
and others. DCML is an important imple-
mentation component of these ITIL
processes in automated environments,
making them more reliable, consistent
and vendor-independent.

• OSS/J – The Operational Support System
through Java initiative is defining a set of
standard application program interfaces
(API) used to communicate with and
between IT OSS and business support
systems. OSS/J defined APIs for service
activation, trouble ticketing, billing and
quality of service, with other APIs in
process. When and if OSS/J defines inter-
faces to data center automation systems,
DCML will provide important content
communicated through those interfaces.

DCML concepts
A data center can be thought of as a com-

plex entity composed of simpler lower-level

entities. For example, a server’s composed

of an operating system, patches, various

software components, configurations, and

associated access rights and policies gov-

erning the use of the server. To instantiate

such a server in a data center environment

requires certain underlying support from the

hardware, network and physical environment

in which it lives. Included in the DCML

description of a server are instructions for

performing this instantiation. Note the dif-

ference between the DCML concept of a

server (a description of a generic class that

can be instantiated in a variety of environ-

ments) and the traditional concept of a

server as designed by CIM and other stan-

dards (a description of a specific instance

of a server). This concept of adaptability is

central to DCML.

The concept essentially means that a DCML

description is like a blueprint. The blueprint

can be used to build the entity described

in a number of different locations and

environments. During the build process,

blueprint variables (such as host name and

networking information) are filled in and

configured with values that make sense for

the environment. In the case of reproductions

on different hardware, DCML must describe

the basic hardware requirements that can-

not be changed and those that can. For

example, Intel-compatible hardware is required

to reproduce a Microsoft Windows server,

but there may be flexibility in the exact

manufacturer, model or amount of memory.

DCML accomplishes this adaptability

through the use of requirement attributes

and “marked-up” configuration files. A

DCML-capable data center automation

system uses the requirement attributes

to determine hardware and other compati-

bilities. When configuring systems, the

data center automation system uses the

marked-up configuration file to substitute

configuration values appropriate to the

new environment.

The need for adaptability is clear in disaster

recovery situations, data center migrations

and consolidations, even when using DCML

to describe additional server capacity. In

all these scenarios, the entities described

by DCML often need to be reproduced in

environments requiring different hardware,

different network configurations, different

clustering configurations, different connecting

components, and simple differences such

as host name and IP address.

Another key DCML concept is the ability to

represent best practices, standards and

policies used in the management of a data

center environment. Without the ability to

capture and represent this kind of informa-

tion, a data center automation or utility

< 4 >

technical white paper

DCML defines two constructs to enable

the security of the information conveyed

in a DCML document:

• Encrypted – The encrypted construct is
used to encrypt the payload it carries
to avoid unauthorized viewing. Any
encryption algorithm may be used,
provided it follows a few simple rules.

• Signed – The signed construct is used
to sign the payload it carries to avoid
unauthorized tampering. Any signature
algorithm may be used, provided it fol-
lows a few simple rules.

The encrypted and signed constructs may

appear at any level of a DCML document

and may be nested within one another,

enabling maximum flexibility.

Overview of the DCML
specifications
Describing the entire contents of a data

center in enough detail to be able to repro-

duce those contents is a daunting task, given

the diversity of technologies represented

in a typical data center. Yet, you do not

have to solve the entire problem to start doing

useful things. For example, you can solve

the capacity management problem for many

applications simply by describing servers,

software components and configurations.

Therefore, we have taken an incremental

approach to defining DCML, which is com-

posed of the following set of specifications:

• Framework specification – This describes
the overall DCML approach, formats and
conventions used in subsidiary standards,
and how DCML components are combined
and related to one another. It also describes
how DCML can be extended in the docu-
ments below and in future documents.

• Hardware specification – This specifica-
tion describes how to represent server,
network, storage and security hardware
requirements in DCML. Because this type
of information overlaps with work already
done by CIM, this specification describes
how DCML references CIM to represent
the information.

• Network specification – It describes how
to represent network topology, software
and configuration information in DCML.

• Storage specification – This specification
describes how to represent storage
topology, software and configuration
information in DCML.

• Software specification – It describes how
to represent software components in
DCML, their configurations and associated
data. Software components include
operating systems, patches, packaged
software applications and custom soft-
ware applications.

XML representation of DCML
There are many different ways to represent

the information described above. We chose

XML Schema as the language to describe

DCML. XML has become the lingua franca

of information exchange on the Internet. It

is widely known, widely implemented, and

well-understood technology. XML parsers

and generators are readily available from

a number of sources, making implementa-

tion cost relatively low. XML Schema is a

convenient method of defining standard

XML documents.

DCML components are defined using XML

Schema, a standard way to represent the

structure, content and semantics of XML

documents. XML Schema is defined by

the W3C.

Future DCML work
DCML is in its infancy. Much work is

required to make it into a suitable stan-

dard. Nevertheless, early work on the

specification and prototype implementation

is promising. Our intention is to form a

consortium of representative like-minded

organizations willing to commit time and

resources to the further development

of DCML as an industrywide standard.

That organization will submit the DCML

specification to a standards body such

as DMTF, IETF, OASIS, or SNIA. The

specific organization will be chosen at

the appropriate time.

computing solution is simply an “amplifier”

for the bad (or possibly good) practices

knowledge possessed by each individual.

DCML allows application-, organization-

and technology-wide best practices to be

described and, therefore, interpreted by

data center automation systems. These

best practices relate primarily to software

and their configurations, and are captured

by the best-practices library portion of a

DCML description. The DCML blueprint

describes how to combine these best-

practice standard configurations with the

physical components to create a best-

practices data center environment.

Another key DCML requirement is the ability

to represent the wide variety of diverse

technologies in today’s (and tomorrow’s)

data centers without imposing requirements

that those technologies be changed. This

requirement is a practical one. Imposing

new requirements on technologies to be

managed has many advantages in theory,

but actually getting those technologies

changed poses serious challenges to the

deployment of DCML. Because it imposes

no requirements on the technologies it

describes, DCML can be useful today,

without the long adoption cycles that have

accompanied other management standards

such as SNMP and CIM.

Security
Although DCML is neither a security proto-

col or concerned directly with security itself,

there often may be a need to represent

sensitive information in DCML. For example,

to reproduce a server, one might need to

reproduce the password file contained on

that server. To reproduce the state of an

application, one might need to reproduce

sensitive data maintained by that application.

DCML provides the mechanisms by which

sensitive information can be separated from

nonsensitive information and secured

using appropriate means. For example,

DCML enables information components

to be signed to prevent tampering and/or

encrypted to prevent unauthorized access.

DCML does not define the mechanisms by

which this occurs – it merely provides a

framework in which it can be done.

< 5 >

technical white paper

Contacts
Tim Howes, Chief Technology Officer
Opsware Inc.
599 N. Mathilda Avenue
Sunnyvale, CA 94085
phone: 408 744 7300
e-mail: howes@opsware.com

Darrel Thomas, Chief Technologist
EDS Hosting Services
5400 Legacy Drive
Plano, Texas 75024-3199
phone: 1 800 566 9337
e-mail: darrel.thomas@eds.com

About the Authors

Tim Howes
Tim Howes is co-founder, chief technology

officer and executive vice president of

development at Opsware Inc. (formerly

Loudcloud), where he is responsible for

product development and strategy. Prior

to co-founding Opsware Inc., Tim held a

number of senior technical positions at

America Online, Inc. and Netscape

Communications Corp. Before joining

Netscape, he was a researcher and

National Science Foundation project

director at the University of Michigan,

where he co-invented the Lightweight

Directory Access Protocol (LDAP). Tim

holds a Ph.D. in computer science from

the University of Michigan.

Darrel Thomas
Darrel Thomas is chief technologist of the

EDS Automated Hosting Services division,

where he leads architecture, implementation

and business-to-technology strategy. His

responsibilities include acquisition strategy,

and integration and automation evangelism

across EDS. Previously, Darrel was the chief

architect, designer and implementation

lead for EDS’ original Internet IT Hosting

offering as well as the WebVault™, EDS’

original leading-edge hosting environment.

He was also chief technologist of Persona,

Inc. – the first identity management and

privacy services provisioning entity – which

developed and provided online personal

information (PII) and identity management

services. Darrel holds a bachelor of science

degree in computer science from Millsaps

College in Jackson, Mississippi.

About the DCML Organization
The DCML Organization is an open, independent, vendor-neutral, non-profit

corporation being formed to create an open, freely licensed specification,

Data Center Markup Language (DCML), and to encourage its broad adoption.

DCML is the first standard that provides a structured model and encoding

to describe, construct, replicate and recover data center environments and

elements. DCML is designed to provide a mechanism to enable data center

automation, utility computing and system management solutions to exchange

information about the environment to make utility computing a reality. In

addition to developing specifications, the organization intends to work with

formal standards bodies, enable and administer certification and compliance

programs, and perform user and market education. For more information

about how to join the DCML Organization, or to learn more about planned

activities and DCML, visit www.dcml.org.

DCML is a trademark of the DCML Organization. All other product names, service marks, and trademarks mentioned herein are trademarks of their respective owners.

